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1 Cast of Characters

Brunton and Kutz (2022) describe applications of Dynamic Mode Decompositions

(DMDs) to a variety of problems. Applied mathematicians have recently used them as a

“machine learning” technique to construct deterministic dynamical systems, including

fluid dynamics. This paper applies DMDs to a dynamical system buffeted by random

shocks. We analyze connections among Dynamic Mode Decompositions (DMDs),

vector autoregressions (VARs), and a special case of what Stock and Watson (2016) call

dynamic factor models. At critical points we deploy singular value decompositions

and associated eigen decompositions, but we apply them in different ways and to

different objects than do the papers surveyed by Stock and Watson.1

Our paper focuses on five objects:

1. A hidden Markov Model for a covariance stationary stochastic process {yt}∞t=−∞

that takes the form of an LQG state-space model, where yt is an M × 1 vector.

2. An innovations representation of the hidden Markov model

3. An infinite-order vector autoregression (VAR) for {yt}∞t=−∞

4. A reduced-rank first-order VAR

5. A Dynamic Mode Decomposition (DMD) of a data set [y1,y2, . . . ,yT ,yT+1]

We describe situations in which

• items [1] and [2] are both valid representations of item [3]

• items [3] and [4] coincide

• item [5] provides a good way to estimate item [4]

1See Appendix A for details.
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The infinite-order VAR in item [3] is

yt =
∞∑
j=1

B∞
j yt−j +at

E[at y⊤
t−j ] = 0 for all j ≥ 1

where E[at aTt ] = Ω for all t. We reverse engineer circumstances in which

• B∞
j = 0 ∀j > 1

• B∞
1 is an M ×M matrix of rank N << M ,

so that the infinite-order VAR becomes a reduced-rank first-order VAR. We connect

that reduced-rank first-order VAR to a time-invariant innovations representation

x̂t+1 = A x̂t +Kat

yt = G x̂t + at, at ⊥ yt−1,

where A is N × N , G is M × N , and K is M × N , yt−1 = {yt−s}∞s=1, ⊥ indicates

orthogonality, and where the innovations representation is associated with an LQG

state space representation for the {yt}∞t=−∞ process:

xt+1 = Axt+Cwt+1

yt = Gxt+vt,

where random shocks wt+1 ∼ N (0, IN×N ), measurement errors vt ∼ N (0,RM×M )

and ws ⊥ vτ for all s, τ ; here C is N ×N .

Connections among the five objects are intermediated through a Dynamic Mode De-

composition (DMD) that we use to infer a reduced-rank first-order VAR from a data set

[y1,y2, . . . ,yT ,yT+1].2 We use these connections to infer the matrices A,C,G,R of the

2Through its connection to the Koopman operator, the DMD algorithm has also been used to approximate
non-linear dynamics (see Brunton et al. (2016), Mezic (2020) and Williams et al. (2015)).
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hidden Markov model and also the Kalman gain matrix K in the associated innovations

representation from a reduced-rank first-order vector autoregression (VAR).3 When

applicable, this machinery provides a good way to estimate parameters of dynamic

stochastic equilibrium models with large numbers of endogenous variables (Iao and

Selvakumar (2024) offer examples).

Section 2 applies a Dynamic Mode Decomposition (DMD) algorithm of Tu et al.

(2014) to estimate a reduced-rank first-order vector autoregression in a setting in which

least-squares regression coefficients are underdetermined.4 Section 2 also describes

DMD “dynamic modes” and how to compute them. Section 3 relates dynamic modes

to objects in a “pseudo innovations representation” that approximates an authentic

innovations representation that is affiliated with a linear state-space model.5 We

state restrictions on the linear state space model that align the infinite-order VAR

implied by an authentic innovations representation with the reduced-rank first-order

VAR associated with the DMD algorithm. Under these restrictions, DMD modes

estimate hidden Markov states (a.k.a. “dynamic factors”) in that state-space model.

The restrictions make each hidden factor in the state-space model follow a univariate

first-order autoregression with shocks that are possibly correlated contemporaneously

across factors.6 As the number of variables M in the observation vector grows, a pseudo

innovations representation aligns better and better with an authentic innovations

representation. This outcome implies that a large enough and sufficiently independent

3Our approach is in the spirit of distinct statistical models proposed by Geweke (1977), Sargent and Sims (1977),
Geweke and Singleton (1981), Stock and Watson (2002), Bai (2003), and Bai and Ng (2013), but our statistical model of
hidden factors differs from theirs. Like them, we estimate “non-structural Kepler stage” descriptive models that can
compress data and reveal patterns. As Koopmans (1947) recommends, these empirical regularities are subsequently
to be interpreted by “structural Newton stage” models in terms of parameters that describe market structures and
decision makers’ preferences, constraints, and information flows. Koopmans interpreted Burns and Mitchell (1946)
as such a “Kepler” stage model of business cycles, in contrast to the structural, simultaneous stochastic difference
equation models of business cycles that could be constructed with tools developed by Koopmans (1950), Hood and
Koopmans (1953), and Marschak (1953). Iao and Selvakumar (2024) apply our techniques to estimate an auxiliary
model that they then use as part of a strategy for estimating structural parameters of what purports to be a “Newton
stage” modern macro model with many heterogeneous agents.

4Brunton and Kutz (2022, sec. 7.2) describes the algorithm.
5Ljungqvist and Sargent (2018, secs. 2.7-2.10) describe innovations representations and link them to vector

autoregressions.
6Appendix A compares identification restrictions imposed in various dynamic factor models.
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collection of contemporaneous noisy measurements of linear combinations of the

hidden factors contains as much information as would be provided by an infinite

history of those measurements.7 When these conditions prevail, matrices defining

a state-space model can be recovered from objects computed by DMD – a finding

that justifies an inexpensive algorithm for estimating parameters of a state-space

system. Section 4 illustrates, checks, and stress-tests our section 3 theoretical findings

by conducting two “lab experiments” in the context of an example theoretical model.

Section 5 uses a reduced-rank first-order VAR to describe dynamics of US CEX cross

sections for quarterly US data from 1990 to 2021. We detect and venture to label two

dominant DMD modes, one that we interpret as a macroeconomic “reference cycle”

in the tradition of Burns and Mitchell (1946), as reinterpreted by Koopmans (1947),

and another that we interpret as an “inequality mode” in the spirit of recent empirical

macroeconomic research in the spirit of Guvenan et al. (2014, 2017). Section 6 offers

concluding remarks that point to how Iao and Selvakumar (2024) have used a reduced-

rank VAR as an auxiliary model that helps them infer parameters of a heterogeneous

agent dynamic general equilibrium model.

2 Reduced-Rank First-Order VAR

2.1 Data and Statistical Model

Let yt be an an M × 1 vector of de-meaned random variables at t = 1, . . . , T + 1, and

assume that M > T , so that there are more variables than time periods.8 Horizontally

stack yt vectors across times to create two M × T ”tall and skinny” data matrices Y

7That averaging observations over large cross-sections accelerates learning about hidden dynamic factors is
reminiscent of Chamberlain and Rothschild (1982). More recent examples include Forni et al. (2000), Forni and Lippi
(2001), and a variety of the papers surveyed in Stock and Watson (2016).

8Hirsh et al. (2020) show that centering the data is equivalent to incorporating an affine term in the dynamic model
and improves the performance of DMD in correctly extracting the dynamics of the data.
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and Y′:

Y = [y1,y2, . . . ,yT ] (1)

Y′ = [y2,y3, . . . ,yT+1]. (2)

We want to estimate a first-order vector autoregression

yt = Byt−1+at , at ⊥ yt−1 (3)

E[at a⊤t ] = Ω, (4)

where ⊥ indicates orthogonality. We have M(T + 1) data points for estimating M2

parameters in B. Since M2 > M(T + 1), the least squares estimator B̂ of B is underde-

termined, so we choose

B̂ = argmin
rank(B)=N

||Y′−BY ||F (5)

where ||D ||F denotes the Frobenius norm
∑

i,j D
2
i,j of matrix D. To compute B̂, we

first represent Y with a reduced Singular Value Decomposition (SVD)9

Y = ŨΣ̃Ṽ
⊤
,

where Ũ is M × T , Σ̃ is T × T and Ṽ
⊤

is T × T . We compress Y by using the N largest

singular values to form

Y ≈ UΣV⊤, (6)

where U = Ũ[:, : N ], Σ = Σ̃[: N, : N ] has N singular values as its only non-zero entries,

and V⊤ = Ṽ
⊤
[: N, :]. Here U is M × T , V is T × N , Σ is N × N , and V⊤ is N × T .

From now on we let Y presented in approximation (6) denote the compressed version

9Anderson (1951) and Anderson (1999) estimate reduced-rank regressions by first computing an unrestricted
least-squares regression. This approach is infeasible in our M > T setting.
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of the original data set. We use the reduced SVD approximation (6) of the original Y

matrix as an input to computing

B̂ = Y′Y+,

where Y+ = VΣ−1U⊤ is a generalized inverse of Y that verifies Y+Y = IT×T and

Y′ is defined in (2).

We use these inputs to represent the reduced-rank first-order VAR (3) in terms of N

“dynamic modes” by implementing the following steps:10

1. Use U and B̂ to construct B̃N×N = U⊤ B̂U.

2. Construct an eigendecomposition

B̃ = WΛW−1,

where columns of the N ×N matrix W are eigenvectors of B̃ and eigenvalues of

B̃ appear on the diagonal of the diagonal matrix Λ.

3. Define

ΦM×N ≡ Y′VΣ−1W .

4. Take advantage of a finding of Tu et al. (2014) that columns of Φ are eigenvectors

of B̂ that share eigenvalues with B̃, so that

B̂ = ΦΛΦ+, (7)

where Φ is M ×N , Λ is N ×N, and Φ+ is the N ×M (left) generalized inverse

that verifies Φ+Φ = IN×N .
10Here we are following and extending steps described by Brunton and Kutz (2022, sec. 7.2).
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5. Define an N × 1 vector of “dynamic modes” by11

x̃t ≡ Φ+ yt .

6. Use representation (7) of B̂ to express the reduced rank first-order VAR as

yt = ΦΛΦ+ yt−1+ ât, ât ⊥ yt−1 (8)

7. Compute

Ω̂ =
1

T − 1

T∑
t=1

âtâ
⊤
t (9)

8. Multiply both sides of equation (8) by the N × M matrix Φ+ to obtain x̃t =

Λx̃t−1 +Φ+ât. Use it together with x̃t−1 = Φ+ yt−1 in equation (8) to form the

system

x̃t = Λx̃t−1 +Φ+ât (10)

yt = ΦΛx̃t−1 + ât, (11)

where ΦΛx̃t−1 = B̂ yt−1 and ât ⊥ yt−1 but ât is not necessarily orthogonal to

history yt−1 , i.e., ât ̸⊥ yt−1 .

9. Construct a moving average representation for modes x̃t:

x̃t+j = Λjx̃t +

j−1∑
s=0

ΛsΦ+ât+j−s

10. Construct j step ahead conditional covariances of modes:

11In section 3, we’ll link these modes to an N × 1 hidden state vector xt that is defined implicitly by x̃t ≡ E[xt |yt].
We’ll also define a distinct projection x̂t = E[xt |yt−1].
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E(x̃t+j − E x̃t+j |x̃t)(xt+j −E x̃t+j |x̃t)
⊤ =

j−1∑
s=0

ΛsΦ+Ω̂(Φ+)⊤Λs (12)

In sections 3 and 4, we describe conditions under which outcomes of the DMD

algorithm are associated with objects that define a linear, Gaussian hidden Markov

model. Those sections also indicate other purposes a DMD analysis can serve.

3 Two Innovations Representations

In section 2, we described how to construct a reduced-rank first-order vector autoregres-

sion and then use it to cast representation (10)-(11) in terms of dynamic modes x̃t. In

this section, we use equations (10)-(11) to construct what we call a pseudo innovations

representation cast in terms of an N × 1 vector x̂t. To accomplish this, we begin by

recalling that in section 2 we implicitly defined an N × 1 vector xt by a projection

x̃t = Ext |yt .

Define a distinct projection

x̂t = Ext |yt−1 .

System (10)-(11) implies that x̂t is related to x̃t−1 by

x̂t = Λx̃t−1 = ΛΦ+ yt−1 . (13)
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With equation (13) in mind, multiply both sides of (10) by Λ and substitute x̂t for Λx̃t−1

in equation (11) to obtain the pseudo innovations representation:

x̂t+1 = Λx̂t +ΛΦ+ât (14)

yt = Φx̂t + ât, ât ⊥ yt−1 . (15)

It is enlightening to compare representation (14)-(15) with an authentic time-invariant

innovations representation

x̂t+1 = A x̂t +Kat (16)

yt = G x̂t + at, at ⊥ yt−1 (17)

that is associated with the linear state-space model

xt+1 = Axt+Cwt+1 (18)

yt = Gxt+vt, (19)

where the N ×M matrix K in equation (16) is the steady-state Kalman gain associated

with (18)-(19), shocks wt+1 ∼ N (0, IN×N ), measurement errors vt ∼ N (0,RM×M ) and

ws ⊥ vτ for all s, τ ; here A is N×N , C is N×N and G is M×N . Now x̂t = E[xt |yt−1],

and at = yt−E[yt |yt−1], at ⊥ as ∀t ̸= s for yt = {ys}s<t and H(at) = H(yt) connect

Hilbert spaces spanned by histories at and yt, respectively.12 Furthermore,

Ω ≡ E[at a⊤t ] = GΣ∞G⊤+R,

12The notation H(yt) indicates a space spanned by all square-summable linear combinations of history yt, and so
on.
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where Σ∞ is the positive semi-definite solution of the algebraic matrix Riccati equation

Σ∞ = E[xt−x̂t][xt−x̂t]
⊤

= CC⊤+KRK⊤+(A−KG)Σ∞(A−KG)⊤ (20)

and the steady-state Kalman gain matrix K satisfies

K = AΣ∞G⊤(GΣ∞G⊤+R)−1. (21)

Comparing system (14)-(15) with system (16)-(17) tempts us to match objects ac-

cording to

A = Λ, K = ΛΦ+, G = Φ (22)

However, the distinct least-squares orthogonality conditions ât ⊥ yt−1 and at ⊥ yt−1

are tell-tale signs that the pseudo-innnovations representation (14)-(15) is associated

with a first-order VAR, while an authentic innovations representation (16)-(17) is

associated with an infinite-order VAR. This means that it is not appropriate to expect

the mapping in (22) to prevail in general.

However, in subsection 3.1, we describe restrictions on the linear state space model

(18)-(19) that make a first-order VAR satisfy least-squares orthogonality conditions that

promote it to an infinite-order VAR, thereby activating connections (22).13 Under those

restrictions we can infer parameters of a linear state space model (18)-(19) from our

reduced-dimension first-order VAR objects Λ,Φ.

3.1 Restrictions on State-Space Model

We impose the following restrictions on state-space model (18)-(19):

13This requires that the innovations ât be orthogonal to the linear space spanned by yt−1 and not just orthogonal
to yt−1.
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1. M >> N

2. A is a diagonal

3. G has full column rank

4. ||G⊤G|| = O(M) and ||R|| = o(M) where || · || denotes the Frobenius norm

Item 1 asserts that cross autocorrelations among components of {yt} are interme-

diated by common dependencies on N hidden state variables. Item 2 asserts that

each component of xt follows an AR(1) process with shocks that can be correlated

contemporaneously across components. Item 3 requires columns of G to be linearly

independent.14,15 Item 4 requires that, as the number of observables becomes large,

||G⊤G || does not grow ”too fast”. The item 4 restriction on R allows for heteroskedas-

ticity in the measurement errors, but requires that variances cannot grow faster than

rate M . Stock and Watson (1988) describe a related but stronger assumption that re-

quires that the maximum eigenvalue of R be bounded, which limits cross-correlations

between measurement errors.16,17

To help connect pseudo and authentic innovation representations, we recycle nota-

tion and temporarily define x̃t ≡ E[xt |yt], so that now

x̃t = x̂t + Lât (23)

where

L = Σ∞G⊤(GΣ∞G⊤+R)−1, (24)
14Item 3 is an identifying assumption on G that precludes rewriting the state-space model with fewer factors. To

see this, suppose G was rank N − 1. Then it would be possible to rewrite the linear state-space model with N − 1

factors, implying that only N − 1 factors are identified.
15It is useful to compare our restrictions with those coming from a principle components analysis of Bai and Ng

(2008) who describe a set of possible identifying restrictions on G and xt that involve either (a) orthogonality of the
hidden factors, or (b) orthogonality of the loadings G, and/or (c) some zero restrictions on elements of G. By contrast,
item 3 does not restrict any particular elements of G.

16Item 4 is also a common assumption in the principal components literature; see for example Bai and Ng (2013)
and Chamberlain and Rothschild (1983).

17Iao and Selvakumar (2024) also place these assumptions on a linear state-space model to estimate structural
parameters of heterogeneous-agent models with high-dimensional micro data.
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and consequently

x̃t+1 = Ax̃t +Φ+ât+1 (25)

yt+1 = ΦΛx̃t + ât+1 (26)

3.2 Connections

Innovations representation (16)-(17) is associated with an infinite-order VAR for the

{yt} process:

yt =
∞∑
j=1

B∞
j yt−j +at (27)

E[at y⊤
t−j ] = 0 for all j ≥ 1

E[at aTt ] = Ω = GΣ∞G⊤+R (28)

B∞
j = G(A−KG)j−1K ∀j ≥ 1 (29)

where rank(B∞
j ) = N ∀j ≥ 1. Under the four subsection 3.1 restrictions on state-

space system (18)-(19), (A−KG) ≈ 0, so that (29) implies18

B∞
j ≈


GK j = 1

0 j > 1

(30)

Consequently, the infinite order VAR (27) becomes a first order VAR

yt = B∞
1 yt−1+at, (31)

which is equivalent to the reduced-rank first-order VAR (3) with B ≈ B∞
1 . This means

that the pseudo-innovations representation approximates an innovations representa-

18See Iao and Selvakumar (2024) for a proof.
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tion well and rationalizes equations (22). These equalities allow us to infer R and CC⊤.

From the formulas (21) and (20) for K and Σ∞, respectively, it follows that

A⊤−G⊤K⊤ =
[
I−G⊤Ω−1GΣ∞

]
A⊤ .

When A−KG = 0, this formula implies that I = G⊤Ω−1GΣ∞, which implies that

Σ∞ satisfies

Σ∞ = (G⊤Ω−1G)−1.

Then from equation from (28), we infer

R = Ω−GΣ∞G⊤ . (32)

When A−KG = 0, equation (20) implies Σ∞ = CC⊤+KRK⊤, which in turn

implies

CC⊤ = Σ∞ −KRK⊤ . (33)

Next, solve the discrete Lyapunov equation

Vx = AVxA
⊤+CC⊤ (34)

affiliated with state evolution equation (18) for {xt}, the stationary covariance matrix

of hidden state vector xt. Then we can compute the stationary covariance matrix Vy of

the measurement process {yt} from

Vy = GVxG
⊤+R . (35)
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3.3 Algorithm

Algorithm 1 provides pseudo-code for estimating A,CC⊤,G,R state-space model

(18)-(19). We apply the algorithm to a suite of laboratory examples in the section 4.19

Algorithm 1 Pseudo-code for inferring A,G,R,CC⊤

1. Set number of modes N

2. Compute Φ, Λ and B̂ via DMD.

3. Approximate A with Λ.

4. Approximate G with Φ.

5. Approximate L with Φ+ and K with K̂ = ΛΦ+

6. Approximate x̃t with Φ+ yt.

7. Approximate x̂t with Λx̃t−1.

8. Approximate E[yt+j |yt] = GAj x̃t with ΦΛjx̃t.

9. Approximate Ω with

Ω̂ =
1

T − 1

T∑
t=1

âtâ
⊤
t

where ât = yt−B̂ yt−1.

10. Approximate Σ∞ with
Σ̂∞ = (Φ⊤Ω̂−1Φ)−1

11. Approximate R with
R̂ = Ω̂−ΦΣ̂∞Φ⊤

12. Approximate CC⊤ with

ĈC⊤ = Σ̂∞ − K̂R̂K̂
⊤

19Appendix B discusses a computational detail in inverting rank-deficient matrices.
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4 Laboratory

In this section, we apply our algorithm to outcomes generated by a suite of state-space

models with two factors N = 2. Models differ in the length M of the measurement

vector yt. We set the state-space matrices according to

A =

0.9 0

0 0.7

 , C =

0.5 0.4

0 0.5

 (36)

G̃ =



1 0

...
...

1 0

0 1

...
...

0 1


, R = 0.25IM

The first M
2 rows of G are [1, 0] and the second M

2 rows are [0, 1], so G has full column

rank.

We make two comparisons. The first compares sample outcomes delivered by

Algorithm 1 with the population objects implied by the matrices in equation (36) (see

Section 4.1). The second studies finite-sample biases of the DMD implementation

by comparing averages of statistics from repeated random samples with the same

population objects (see Section 4.2).

4.1 Population Objects

From A,C,G,R we compute population objects B,K,Σ∞,Ω,B∞
1 by first enlisting the

quantecon LinearStateSpace class to compute population moments of the stationary

distribution of the process {xt,yt} and the associated population cross-covariagrams

16



E[xt x
⊤
t ] ≡ Σx, E[yt y

⊤
t ] ≡ Σy, and E[xt y

⊤
t ] ≡ Σxy. These allow us to compute

population first-order autoregressive coefficients B via

B = GAΣxG
⊤Σ−1

y

After that, we use the quantecon class Kalman to compute the innovations represen-

tation and the associated K,Σ∞. This allows us to compute the population B∞
1 and

one-step-ahead conditional covariance matrix Ω via

B∞
1 = GK

Ω = GΣ∞G⊤+R .

Next, we use equation (32) to calculate a population analogue of R̂ by setting G = Φ.

We then use R̂ as an input to step 12 from Pseudo-code 1 to compute a population

analogue of ĈC
⊤

.

We perform these calculations for M = 2,M = 300,M = 1000 to obtain outcomes

that we report in Table 1. Frobenius norms reported in the first three rows describe

how well a pseudo innovations representation approximates an authentic one. As

anticipated, as M gets larger, ||A−KG ||F approaches zero, as do approximation error

measures M−1||B−B∞
1 ||F and M−1||K−AG+ ||F 20. In addition, ĈC⊤ approaches

CC⊤ and R̂ approaches R.

Object M = 2 M = 300 M = 1000

||A−KG ||F 0.5 0.02 0.003
M−1||B−B∞

1 ||F 0.2 3e−5 3e−6

M−1||K−AG+ ||F 0.25 3e−6 2e−7

M−1||R̂−R ||F 0.2 0.001 0.0004

||ĈC⊤ −CC⊤ ||F 0.5 0.004 0.001

Table 1: Population objects

20We compare K to the matrix AG+ because our theory describes how we can approximate K with ΛΦ+, and
that we can approximate G with Φ.
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These findings with population objects set the stage for an experiment in which

we construct repeated samples of M × T data matrices Y, to be described in the next

subsection.

4.2 Sample Counterparts

We apply our algorithm to samples paths {yt}T+1
t=1 generated by state-space sys-

tem (36). For each sample j = 1, . . . J , we create data matrices Y(j) and

Y′(j). We apply Pseudo-code 1 to acquire the following objects for sample j:

Λ(j),Φ(j), K̂
(j)

, Ω̂(j), Σ̂
(j)
∞ , R̂

(j)
, ĈC

⊤(j). Then we calculate element-wise means across

all samples. For example, we compute

Ê[Λ] ≡ 1

J

J∑
j=1

Λ(j)

where Ê[Λ] is an N ×N matrix of sample means. We then subtract the sample mean

from its population counterpart to approximate mean errors of our sampled DMD

estimators.

We split the finite-sample comparisons into two distinct, but related parts. The first

of these implements the finite-sample analogue of the population exercise in Section

4.1 by fixing T = 150 and increasing M . In both exercises, J = 5000. Table 3 reports

Frobenius norms of mean errors. Generally speaking, the simulations show that the

mean errors fall as M increases from 300 to 1000. However this result is more stark in

some parameters than others. For example, increasing M reduces the bias in the DMD

estimator B̂ by an order of magnitude, while the reduction in the bias in Λ is not as

profound.

Next, we fix M = 1000 and increase T from 150 to 999. Table 3 reports outcomes.

The simulations show that the mean error falls for all the estimators, especially those

for which the increase in M from 300 to 1000 has little effect, such as Λ. Taken together,
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Object M = 300 M = 1000

||Ê[Λ]−A ||F 0.046 0.043

M−1||Ê[Φ]−G ||F 4.0e−3 2.2e−3

M−1||Ê[B̂−B ||F 1.7−4 5.1e−5

M−1||Ê[K̂]−K ||F 4.1e−5 5.7e−6

M−1||Ê[Φ+]− L||F 6.4e−5 9.3e−6

M−1||Ê[Ω̂]−Ω||F 5.9−3 5.7e−3

||Ê[Σ̂∞]−Σ∞||F 0.92 0.59

M−1||Ê[R̂]−R ||F 0.006 0.005

||E[ĈC
⊤
]−CC⊤ ||F 0.94 0.62

Table 2: Estimate of finite-sample bias of DMD estimation for M = 300 and M = 1000,
for T = 150

our lab experiments suggest the important role that M and T both play in shaping the

quality of inferences based on algorithm 1.

Object T = 150 T = 999

||Ê[Λ]−A ||F 0.043 6.7e−3

M−1||Ê[Φ]−G ||F 2.2e−3 8.4e−4

M−1||Ê[B̂−B ||F 5.1e−5 6.8e−6

M−1||Ê[K̂]−K ||F 5.7e−6 1.8e− 06

M−1||Ê[Φ+]− L||F 9.3e−6 2.4e− 06

M−1||Ê[Ω̂]−Ω||F 5.7e−3 1.0e−3

||Ê[Σ̂∞]−Σ∞||F 0.59 0.075

M−1||Ê[R̂]−R ||F 0.005 0.001

||E[ĈC
⊤
]−CC⊤ ||F 0.62 0.077

Table 3: Estimate of finite-sample bias of DMD estimation for M = 1000, for T = 150
and T = 999

5 US income and consumption dynamics

We construct representation (10)-(11) for quantiles of cross-sections of US consumption

and income and use it to describe salient features of US business cycles from 1990 to

2021. We want to study connections between cross-section dynamics and the cross

section averages that macroeconomic models are designed to describe and understand.
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We characterize cross-section distributions by their quantiles.21

5.1 Data matrix Y

We gather data on private income, post-tax income and consumption from quarterly

waves of the Interview section of the Consumer Expenditure Survey between 1990 and

2021.

For Consumption we sum total expenditure in the current month (TOTEXPCQ)

and total expenditure in the previous month (TOTEXPPQ). We do this because, while

households are interviewed once every three months, timings may not match calendar

quarters. Summing both measures is a common approach that the BLS has suggested.

Private income consists of a subset of categories that sum to before-tax income. Due

to changes in definitions over time, the relevant codes are FINCBTAX (1990-2004) and

FINCBTXM (2004-2021). FINCBTXM also changed its definition in 2013, but retained

the same code name. We categorize the sub-categories of FINCBT∗ series into either

private income or transfer income. Private income is defined as the sum of wages,

business income, financial income, income from rental properties and pensions or

annuities from any source. Transfer income is all other sub-categories of before-tax

income that are not private income. Table 8 in Appendix C describes the categorization.

Post-tax income is private income plus transfers (i.e. before-tax income) minus

taxes paid. Relevant codes are FINCATAX (1990-2004), FINCATXM (2004 - 2013) and

FINCATXEM (2013-2021).

The Interview survey asks about income over the past 12 months, while it asks

about quarterly amounts of consumption. As recommended by the BLS, we divide all

income data by four. We remove all households that consume more than their reported

annual incomes in a single quarter.

21Let Ft[0, B] → [0, 1] be a cumulative distribution function for a possibly bounded nonnegative random variable
at t. Associated with c.d.f. F is a “quantile function” Q : [0, 1] → [0, B] that under some regularity conditions is the
inverse of F . Here we’ll work with “percentiles” defined as Q( 1

i
), i = 1, . . . , 100.
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From these data, we constructed time series of cross-section distributions for con-

sumption, private income, and post-tax income. We’ll describe how we did this for

consumption and note that we followed the same steps to construct panels for the

other two variables. For wave t, we rank all Ĩ households by their consumption levels

c1,t, c2,t, . . . , cĨ,t. Then we split them into one hundred equally sized bins that we call

percentiles. If Ĩ is divisible by 100, then each percentile contains I = Ĩ
100 households.

If not, the bottom 99 bins each contain I households and the 100th bin contains the

remainder. Except for this detail, define q̃p,t as mean consumption of households in

percentile p:

q̃p,t =
1

I

I∑
j=1

cj+I(p−1),t for p = 1, . . . , 100

Quantity q̃p,t is the consumption level of the p-th percentile of the consumption

distribution. We repeated this step for every wave to obtain a time-series of consump-

tion at each percentile. We noticed suspicious ”jumps” in the constructed time-series

for private and post-tax income in Q1-2013 and suspect that these come from the

aforementioned changes in variable definitions. We responded to this situation by

splicing the pre-jump and post-jump data in Q1-2013. We set Q1-2013 consumption

equal to Q4-2012 and recursively accumulated subsequent changes in consumption

in the post-jump data to the adjusted series. We deflated each time-series by the Per-

sonal Consumption Expenditures price index to obtain real objects and then seasonally

adjusted. Call the ”cleaned”, real, seasonally adjusted consumption percentiles qp,t.

We removed 1st and 2nd percentile bins, because consumption for those are neg-

ative in some periods. Since earnings in the CEX are top coded, we also removed

the 99th percentile bins. We formed quarterly growth rates so that our consumption

growth variable is

yconsp,t = log qp,t − log qp,t−1 p = 3, . . . , 98 and t = 1, . . . , T
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Proceeding in this way for the two income concepts, our final data set is a quarterly,

seasonally adjusted time-series of private income, post-tax income, and consumption

growth distributions from 1990 to 2021.

We stack our three cross-sections to form matrix Y. Consequently, M = 291 and

Y =



yprivate3,1 . . . yprivate3,T

... . . .
...

yprivate98,1 . . . yprivate98,T

ypost−tax
3,1 . . . ypost−tax

3,T

... . . .
...

ypost−tax
98,1 . . . ypost−tax

98,T

ycons3,1 . . . ycons3,T

... . . .
...

ycons98,1 . . . ycons98,T



(37)

To help us to interpret the “dynamic modes” that we shall recover from our reduced-

rank first-order VAR, we calculate seasonally adjusted growth rates of the first two

moments of the private income, post-tax income and consumption distributions. We

describe how we do this for the consumption series, again noting that we used the

same procedure to compute cross section moments for the two income concept series.

To obtain one cross-section moment, we take the cross-section mean of consumption

q̄t :=
1
97

∑98
p=3 qp,t. Then we seasonally adjust and take log differences log q̄t− log q̄t−1 =:

µcons
t . (Taking means across quantiles qp,t or households ci,t yields the same quantities.)

To obtain another moment, we compute the cross-section variance of consumption

st :=
1
97

∑98
p=3(qp,t − q̄t)

2. Then we seasonally adjust and take log differences log st −

log st−1 =: σcons
t .22 The final objects, µcons

t and σcons
t , represent growth rates of the first

22An alternative procedure would compute the variance across households st := 1
I

∑I
i=1(ci,t − q̄t)2. Note that

in constructing σcons
t , we are ignoring the variances within each percentile bin. We also compute the variance from

percentiles as described in Chang et al. (2021, Appendix A) with very similar empirical results.
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two moments of the consumption distribution.

5.2 Reduced-Rank First-Order VAR

We want to focus on two dominant modes, so we set N = 2, apply the steps in Section

2 to data matrix Y, and extract what DMD researchers call “dynamic modes”, i.e.,

the N components of x̃t = Φ+ yt. Thus, mode i is x̃i,t = Φ+
:,i yt, where Φ+

:,i is the ith

column of the M × N matrix Φ+. The modes evolve according to equations (10) or

of the corresponding dynamic system with one-step ahead prediction errors in the

dynamic modes having been orthogonalized via a Cholesky decomposition23, i.e.

x̃t+1 := Λx̃t +Het+1 (38)

where et is a standardized random vector. Our algorithm infers

Λ =

0.83 0

0 0.72

 , HH⊤ =

0.11 0.05

0.05 0.13

 , (39)

so both modes are persistent and their innovations have a similar variances. Since

HH⊤ is not diagonal, the modes are correlated. The one-step ahead conditional

correlation between the two modes is 0.48. By setting h = 100 in formula (12) we

approximate an unconditional covariance matrix to be

0.33 0.14

0.14 0.26


with an associated unconditional correlation of 0.46 between the two modes. These

objects will be useful below when we try to reconcile our findings with ones discovered

23Therefore, we define HH⊤ = Φ+Ω(Φ+)⊤. This definition and its interpretation is further reinforced in Section
3.
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Figure 1: Mode 1, x̃1,t = Φ+
:,1yt (standardized)

,

with other approaches.

Figure 1 displays a mode x̃1,t, standardized to zero mean and unit standard devia-

tion. The dark line in Figure 1 plots mode x̃1,t, i.e., the inner product of yt with Φ+
:,1;

the three colored dashed lines show standardized growth of average private income

(µprivate
t ), after-tax income (µpost−tax

t ) and consumption (µcons
t ) defined at the bottom of

section 5.1. Gray denotes a 95% confidence interval of mode 1, computed using the

recursive bootstrap with 5000 simulation draws (see Hansen (2022, sec. 14.46)).24

Table 4 shows the results of six bivariate regressions of the growth of average

incomes and consumption (the dashed lines in Figure 1) on modes 1 and 2. The

coefficients on both modes are significant and positive in all regressions, and the R2 is

also substantial. The R2 associated with mode 1 is higher than mode 2 for consumption,

and vice versa for income. Evidently, mode 1 is highly correlated with cross-section

averages for all three cross-sections, so it seems to qualify as a candidate for a Burns

24We simulate bootstrap samples of yb
t according to yb

t+1 = B̂ yb
t +ab

t+1 for t = 1, . . . , T , where ab
t+1 is drawn

with replacement from recentered residuals in (8), a∗
t+1 = ât+1 − 1

T

∑T
t=1 ât+1. With this bootstrap sample, we

execute steps 1.-3. in Section 2 to obtain Φb. Then we compute the bootstrap modes x̃b
t+1 = (Φb)+ yt. We repeat this

1000 times and construct an associated distribution of x̃b
t+1. We report the 95% coverage intervals for that distribution.
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µprivate
t µpost−tax

t µcons
t

Constant 0.32 0.32 0.36 0.36 0.19 0.19
(0.05) (0.04) (0.04) (0.04) (0.04) (0.04)

Mode 1 0.66 0.64 0.49
(0.08) (0.07) (0.07)

Mode 2 0.85 0.81 0.42
(0.07) (0.06) (0.07)

R-squared 0.37 0.55 0.40 0.57 0.32 0.22

Table 4: Regression results of growth of first moment of distributions (µt) on modes

and Mitchell’s unidimensional “reference cycle” index for business cycles.

To indicate how quantiles of our three cross-sections respond to mode 1, figure 2

plots the first column of Φ. All components (or “loadings”) are positive: as mode 1

rises, so do all quantiles of incomes and consumption.

Figure 2: Loadings Φ·,1 of quantiles on mode 1

Low quantiles of private income growth are more sensitive to mode 1 than are high

quantiles. All quantiles of total income growth are less sensitive to mode 1 than are

corresponding quantiles of private income growth. Most consumption quantiles are
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Figure 3: Mode 2, x̃2,t = Φ+
:,2yt (standardized)

even less sensitive.

Figure 3 shows mode x̃2,t. The dark line in Figure 3 plots standardized mode x̃2,t

while the three colored dotted lines show standardized growth rates of the cross-section

standard deviations of income and consumption variables.25 Table 5 shows counter-

parts to the Table 4 regressions that use cross-section standard deviations, instead of

cross-section averages. Coefficients on both modes are positive and significant, and R2

statistics of the mode 2 regressions are high for all three variables.

σprivate
t σpost−tax

t σcons
t

Constant 0.39 0.39 0.43 0.42 0.11 0.10
(0.11) (0.06) (0.12) (0.06) (0.13) (0.09)

Mode 1 0.50 0.76 0.70
(0.20) (0.20) (0.21)

Mode 2 2.1 2.19 1.98
(0.10) (0.11) (0.15)

R-squared 0.05 0.77 0.11 0.79 0.08 0.59

Table 5: Regressions of growth of second moment of distributions (σt) on modes

To indicate how quantiles of our three cross-sections respond to mode 2, figure

25As before, the gray swathe denotes the 95% confidence interval of mode 2, computed using the recursive bootstrap
Hansen (2022, sec. 14.46) with 5000 simulation draws.
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Figure 4: Loadings Φ·,2 of quantiles on mode 2

2 plots the second column of Φ. When mode 2 rises, higher quantiles of all three

cross-sections increase more than lower quantiles. Private income growth falls for low

quantiles. Mode 2 seems to be an ”inequality mode”.

5.3 Connections with other data summaries

Our DMD detects disparate responses of income and consumption quantiles to two

dynamic modes. The reference cycle mode 1 affects low quantiles of private income

the most, and provokes smaller responses of other quantiles. In contrast, responses of

all consumption quantiles to model 1 are similar.

Several papers have inferred that higher quantiles consumption are more responsive

to business cycles than lower ones. Parker and Vissing-Jorgensen (2009) regress the

annual change in log consumption on the coincident change in log aggregate real per

capital consumption using CEX data. They find that the sensitivity of the top 10% of

the distribution is substantially higher than of the lower 80%. They find a qualitatively
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similar relationship for income using data from Piketty and Saez (2003). Guvenan

et al. (2014) and Guvenan et al. (2017) compute a similar regression on Social Security

Administration data and find that exposures of earnings to aggregate variables are

”U-shaped” with respect to the earnings level.

Are our results compatible with these? To find out, we substitute our DMD esti-

mates of Λ,H, and Φ in system (38) and (11) and simulate data of length T = 1000.

For every period t and each variable, we calculate cross-sectional means, i.e.,

ȳprivatet =
1

97

98∑
i=3

yprivatei,t , ȳpost−tax
t =

1

97

98∑
i=3

ypost−tax
i,t , ȳconst =

1

97

98∑
i=3

yconsi,t

We then compute time-series regressions of percentiles on the corresponding aggregate.

For private income, the regression is

yprivatei,t = αprivate
i + βprivate

i ȳprivatet + ϵprivatei,t for i = 3, . . . , 98 (40)

Figure (5) plots βi as a function of the percentile rank.26 The left chart is for

private income and shows that households in the low quantiles have high betas on

aggregate private income growth; those in the middle of the distribution have lower

betas, while betas are slightly higher for upper quantiles. This pattern is qualitatively

similar to the ”U-shaped” betas described by Guvenan et al. (2014).27 The right panel

shows corresponding betas for the consumption distribution. It shows that the highest

quantiles of consumption are most responsive to aggregate consumption growth, in line

with the findings of Parker and Vissing-Jorgensen (2009) and others. Thus, computing

regressions like those in the literature on data simulated from our estimated DMD

model yields similar results.

26Almost identical plots arise when we weight quintile growth rates by the corresponding income/consumption
shares. We compute simple means in favor of clarity.

27Since the Social Security Administration data used by Guvenan et al. (2014) is not top coded, the authors are able
to include very high income individuals – the top 0.1% of households – in their analysis. This difference might explain
why our income betas are not as distinctly ”U-shaped”.
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Figure 5: Aggregate regression betas

According to our DMD, the aggregate variables used in regressions (40) covary

along with two correlated dynamic modes. Consequently, estimated βis are functions

of DMD loadings Φ[i,:] on both modes. Increasing consumption loadings on inequality

mode 2 drive the increasing βcons
i , not loadings on the reference cycle mode 1. A similar

effect, albeit smaller quantitatively appears in the left panel. Our DMD model indicates

that those ”U-shaped” private income betas found by Guvenan et al. (2014) are driven

by fluctuations in the inequality mode 2, not the reference cycle mode 1.

5.4 Impulse responses

To construct impulse response functions with orthogonal shocks, we again adopt repre-

sentation (38) - (11). Figure 6 plots impulse responses to a 1 standard deviation increase

in the first orthogonalized shock. Since innovations ât to the modes are correlated, the

first shock affects both modes (top left panel). The first shock affects the lower private

income quantiles much more than it does the higher quantiles. Differences in responses

are much lower for after-tax income and consumption quantiles.
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Figure 6: Impulse response to orthogonalized shock 1

The impulse responses also imply differential effects to income and consumption

inequality. Figure 7 plots the impulse response of the difference between the 95th

percentile and the 5th percentile to a one-standard deviation decrease in shock 1. It

shows that private income growth inequality increases substantially, and consumption

inequality falls. These results are also consistent with findings contained in papers that

study business cycle dynamics of inequality. Using CPS data, Meyer and Sullivan (2013)

find income inequality rose during the 2009 recession, while consumption inequality

fell. In a more recent paper, Meyer and Sullivan (2023) confirm their earlier findings and

attribute this dichotomy to asset ownership, the prices of which fell dramatically during

the 2009 recession. In response to the negative shock, post-tax income inequality rises,

albeit much smaller in magnitude than private income. Its reaction is consistent with

government transfers being an important redistribution mechanism, as documented in

Heathcote et al. (2023).28

28Heathcote et al. (2023) also infer the importance of household income pooling in the muting of consumption
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Figure 7: Impulse response of 95th - 5th percentile income and consumption to decrease

in shock 1

Another implication of the impulse response to shock 1 is that consumption in-

equality – defined as the cross-sectional standard deviation – arising from shock 1

is ”smoother” than income inequality. To quantify this, we simulate a long sample

(T = 1000) from system (38)-(11), setting shock 2 always equal to zero. For each period,

we calculated an inequality measure for each variable, defined as a cross-sectional

standard deviation. The result is a time-series of our measure of inequality {σ̂t} for

each variable. Table 6 shows sample variances of inequality for all three variables for

the simulated data; these are our estimates of the variances of our inequality measures

attributable to shock 1. 29

The variance of private income inequality is higher than are the variances of post-

inequality. Since our private income variable is already at the household level, our current analysis is unable to speak
to that insight.

29Explicitly, for consumption, the calculation is

1

1000

1000∑
t=1

(
σ̂cons
t −

1

1000

1000∑
t=1

σ̂cons
t

)2

The analagous computations are also done for private income and post-tax income.
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Private income Post-tax income Consumption
Variance of inequality 0.11 0.002 0.001

Table 6: Estimated variance of inequality due to shock 1 from simulated data

tax income and consumption. This is consistent with findings of Heathcote et al. (2010)

(see figure 13), who plot the different measures of inequality in disposable income and

non-durable consumption between 1980 and 2005. These inequality measures include

the variance of the log, the Gini coefficient, the P50-P10 ratio and the P90-P50 ratio. In

all four cases, the time-series of consumption inequality appears, to the naked eye, less

volatile than that of disposable income.

Figure 8 plots impulse responses to a 1 standard deviation increase of the second

orthogonalized shock. By virtue of the lower triangular cholesky decomposition, the

second shock affects only the second mode. Across our three variables, differences in

responses of the 5th and 95th percentiles are largest for private income. For private

income, the 5th quantile falls by 0.6ppts while the 95th quantile increases by a similar

magnitude. It seems that shock 2 ”redistributes” private income. Not so for post-tax

income and consumption quantiles. Responses of all quantiles are positive, though

they are larger in magnitude for higher quantiles.

5.5 State-space objects recovered from reduced-rank first-order VAR

As presented in Section 3, estimates of A and G come directly from the DMD estimates

in (39) and Figures 2 and 4. We use steps 10 and 12 of Pseudo-code 1 to recover

shock covariance matrix CC⊤ and conditional covariance Σ∞. We use step 11 of

Pseudo-code 1 to estimate R. We obtain

ĈC
⊤
=

0.018 0.015

0.015 0.055

 Σ̂∞ =

0.055 0.030

0.030 0.078

 ,

while Figure 9 plots the diagonal of R̂, the variance of the measurement error. Measure-
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Figure 8: Impulse response to orthogonalized shock 2

ment error variances are highest at the very low and very high quantiles, and relatively

small for middle quantiles.

We use equations (34) and (35) to compute Vy. We decompose unconditional

variances diag(Vy) into parts attributable to the factors (diag(GVxG
⊤)) and parts

attributable to the measurement error diag(R). We present these in Figure 10. In the

middle quantiles for both income variables, the proportion of the variance explained

by the factors is around 50%. This proportion falls to around 20% for both low and

high quantiles. For consumption, for most quantiles only around 20% of the variance

is explained by the factors.

To form a frequency-by-frequency counterpart of variance decomposition (35), we
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Figure 9: Measurement error variances

Figure 10: Decomposition of unconditional variance Vy = GVxG
⊤+R of y.
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Figure 11: Spectral density decomposition of y at eight-year frequency ( ω = 2π
32 )

form spectral densities of processes x and y at at frequencies ω ∈ [0, 2π] :

Sx(ω) = [I−A e−ωj ]−1CC⊤[I−A⊤ eωj ]−1

Sy(ω) = GSx(ω)G
⊤+R (41)

Figures 11 and 12 decompose diag(Sy(ω)) into a part diag(GSx(ω)G
⊤) attributable

to the factors and a part diag(R) attributable to measurement errors at frequencies

corresponding to periods of 8 years and 20 years, respectively.30 Figures 11 and 12

indicate that the two hidden factors explain large percentages of the variances of

quantiles at 20-year and 8-year frequencies.

30Since our data is quarterly, for a eight-year period ω = 2π
32

and for a twenty-year period ω = 2π
80
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Figure 12: Spectral density decomposition of y at twenty-year frequency ( ω = 2π
80 )

5.6 Technical qualification

In this section we have adhered to a widespread practice described by Stock and

Watson (2016, Sec. 2) that forms first differences of all variables in order to validate the

assumption that {yt} is a covariance stationary process. As Stock and Watson note, this

practice is vulnerable to the criticism that by over-differencing, it obscures information

that could tighten inference about parameters of the dynamic factor model. In a sequel

to this work, we shall respond to this criticism by combining the DMD procedures

deployed here with the additive functional structures presented by Hansen (2012). For

now, we simply say that, in the spirit of Stock and Watson, we find both approaches

potentially useful.
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6 Concluding remarks

We have described restrictions on parameters of an LQG hidden Markov model that

allow us to infer its free parameters from a reduced-rank first-order vector autoregres-

sion that can be computed via a Dynamic Mode Decomposition and methods provided

by Tu et al. (2014).

We use a DMD to represent dynamics of income and consumption cross sections

from the Consumer Expenditure Survey. We detect two dominant, correlated dynamic

modes: one seems to be a Burns and Mitchell (1946) reference cycle; the other seems

to be an inequality factor. Loadings of quantiles of CEX cross section on these modes

indicate substantial government redistribution and consumption insurance. Impulse

responses of quantiles to innovations in the first “reference cycle” mode indicate quite

different responses in earned income and consumption quantiles, another indication of

government redistributions.

Iao and Selvakumar (2024) use techniques we have described here as ingredients of

an “indirect inference” strategy in the spirit of Gallant and Tauchen (1996) to estimate

structural parameters of a heterogeneous agent dynamic general equilibrium model

that Iao and Selvakumar can simulate, but whose likelihood function is too expensive

for them to compute. So they approach the data with two models, namely, their

structural model and another statistical model whose likelihood they can compute.

Thus, their procedure uses two collections (manifolds) of probability distributions

for outcomes x ∈ X , namely, a DMD manifold of statistical models {fθ(x)}θ∈Θ and

a manifold of structural macro statistical models {gδ(x)}δ∈∆. Iao and Selvakumar’s

first step is to estimate parameters θ ∈ Θ of their auxiliary model using our section

3, algorithm 1 DMD procedures. Their second step is to use repeated Monte Carlo

simulations of model gδ to find parameters of δ ∈ ∆ of their structural macro model
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that minimizes Kullback-Leibler divergence

KL(gδo , fθ) =
∫

log

(
gδo(x)

fθ(x)

)
gδo(x)dx.

Their application thereby uses observed cross-section dynamics to estimate structural

parameters that govern aggregate dynamics.
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A Appendix

A.1 Other Applications of PCA

Stock and Watson (2016, Sec. 2) describe how a principal components representation of a

contemporaneous covariance matrix of a covariance stationary vector stochastic process

is an essential component of what they call a “static” representation of a “dynamic”

factor model. That application of principal components differs substantially from ours.

To appreciate this, notice where singular value decompositions make two appearances

in algorithm our calculations.31 We use a reduced SVD Y = ŨΣ̃Ṽ to form submatrices

U of Ũ and V of Ṽ that appear in formula (6) that we use to compute a compressed

data matrix Y = UΣV⊤ that we then use as an input to forming B̂ = Y′Y+. We

use U and V again when we form B̃N×N = U⊤ B̂U. At this point we apply another

eigendecomposition

B̃ = WΛW−1,

where columns of the N × N matrix W are eigenvectors of B̃ and eigenvalues of

B̃ appear on the diagonal of the diagonal matrix Λ. By way of contrast, Stock and

Watson describe how singular value decompositions are applied to construct a “static”

representation of a “dynamic” factor model by (i) assuming that an observed process

{yt} is covariance stationary, (ii) estimating the M × M covariance matrix Cy of yt,

(iii) using a singular value decomposition to compute M principal components of Cy,

somehow selecting r most important components, then (iv) adopting statistical detec-

tion procedures to infer q < r “factors” in what Stock and Watson call an associated

“dynamic” factor model.

A reader of Stock and Watson (2016) will recognize how our procedure instead

resides within a distinct tradition that connects LQG hidden Markov models and vector

31Many modern procedures compute eigendecompositions by first computing a singular value decomposition. For
example, see Strang (2020).
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autoregressions to infer parameters of the hidden Markov model, a tradition in which

a principal components analysis rarely makes an appearance. See especially Stock and

Watson (2016, Sec. 2). As section 3 above indicates, the hidden Markov model affiliated

with our DMD procedure is a special case of the state-space models described in Stock

and Watson (2016, Sec. 2).

Comparison of identification assumptions PCA estimators of factors and the associ-

ated loadings are only identified up a scale and rotation. Bai and Ng (2013) propose

three sets of restrictions that imply exact identification of the factors and loadings

resulting from the PC estimator.

The first set of restrictions for PC, requires that both the factors and loadings

are orthogonal. The second requires that the factors are orthogonal, and the top

N ×N block of G is lower diagonal, and the third leaves the factors unrestricted but

requires the top N ×N block of G to be the identity matrix. In sum, identification for

principal components require that either the factors are orthogonal, the loadings are

orthogonal or have some special structure that means one or more observations are

noisy measurements of the factors.

Our identification restrictions for DMD impose that the factors jointly follow a

VAR(1), with a diagonal A matrix, but a possibly non-diagonal CC⊤ matrix. Our

restrictions do not require that columns of G are orthogonal nor do they require that

one or more observations are noisy measurements of the factors. We summarize these

comparisons in Table 7.
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Identifying restrictions

Principal components DMD

PC Option 1
• 1

T x̃
′
tx̃t = IN

• G′G is a diagonal matrix with distinct entries • x̃t follows a VAR(1) with

– A is diagonal
– C unrestricted

• G full column rank

• ||G⊤G|| = O(M)

PC Option 2

• 1
T x̃

′
tx̃t = IN

• G =

G1

G2



• G1 =


g11 0 · · · 0

g21 g22 · · · 0
...

...
. . .

...

gr1 gr2 · · · grr

 ,gii ̸= 0, i =

1, . . . , r

PC Option 3

• x̃t unrestricted

• G =

IN

G2



Table 7: Identifying restrictions for method of PC and DMD

B A computational detail

Because M > T , covariance matrix Ω̂ of the sample residuals â1, . . . , âT is ill-

conditioned. This poses a difficulty for the matrix inversion called for in step 10

of algorithm 1. We cope with this situation by computing a generalized inverse via a

Singular Value Decomposition (SVD) of Ω̂. Recycling previous SVD notation, let

Ω̂ = ŨΣ̃Ṽ
⊤

For a k that we set, we construct U = Ũ[:, : k], Σ = Σ̃[: k, : k] and V⊤ = Ṽ
⊤
[: k, :].

Then Ω̂−1 = VΣ−1U⊤ where Σ−1 = diag( 1
Σ1,1

, . . . , 1
Σk,k

).
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C Data
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Code Mneumonic
1990-2004 2004-2013 2013-2022

Private income
Income from salary or wages FSALARYX FSALARYM FSALARYM
Income from non-farm business FNONFRMX FNONFRMM FSMPFRXM
Income from own farm FFRMINCX FFRMINCM
Income from interest on savings accounts or bonds INTEARNX INTEARNM INTRDVXM
Regular income earned from dividends, royalties, estates FININCX FININCXM ROYESTXM
Income from pensions or annuities PENSIONX PENSIONM RETSURVM
Net income or loss received from roomers or boarders INCLOSSA INCLOSAM
Net income or loss received other rental properties INCLOSSB INCLOSBM NETRENTM
Income from regular contributions from alimony and other ALIOTHX ALIOTHXM
Income from care of foster children, cash scholarships OTHRINCX OTHRINCM OTHRINCM
Transfer income
Income from Social Security benefits and Railroad Benefit checks FRRETIRX FRRETIRM FRRETIRM
Supplemental Security Income from all sources FSSIX FSSIXM FSSIXM
Income from unemployment compensation UNEMPLX UNEMPLXM
Income from workmen’s compensation and veteran’s payments COMPENSX COMPENSM OTHREGXM
Income from public assistance including job training WELFAREX WELFAREM WELFAREM
Income from other child support CHDOTHX CHDOTHXM
Food stamps JFDSTMPA
Food stamps and electronic benefits FOODSMPX FOODSMPM JFSAMTM

Table 8: Categorizing CEX income into private and transfers
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